

Co-funded by the Intelligent Energy Europe Programme of the European Union Azione nZEB, per il piano d'azione per l'energia sostenibile verso edifici nZEB.

Jordi Cipriano, 19th September 2013

and application of numerical and simulation methods for the solution of engineering problems in an international context.

CIMNE: BIG NUMBERS

CIMNE

www.aidaproject.eu

BEE Group - CIMNE

www.aidaproject.eu

BEE Group

The Building Energy and Environment Group (BEE) is an autonomous research unit of CIMNE. It was founded in 2001. It has two main headquarters:

• CIMNE-Terrassa: It is placed at GAIA building of the UPC of Terrassa.

• CIMNE-UdL Classroom: It is placed at CREA building of the University of Lleida.

BEE Group - CIMNE

www.aidaproject.eu

to **make energy use in buildings** more sustainable by

making **better energy management**

more affordable, more effective, more attractive and therefore

more appealing.

De-risking energy services: "overall vision of the real building energy performance, based on an understanding of the influence of building **pathologies and occupant behaviour**"

www.aidaproject.eu

- Smart urban environments: "Working with local authorities aiming at integrating software tools and systems in integral decision making platforms"
- Energy Positive living: "Working actively to raise the awareness in the trend towards an energy balance where the building produces as much energy as it consumes"
- Customers empowerment: "Improving the quality of information provision to empower citizens to participate more actively in their energy expenses "

Build up 2 - the European web portal for energy efficiency in buildings, <u>http://www.buildup.eu/</u>

www.aidaproject.eu

Start up company with RSM GASSÓ.

Since 2006, CIMNE and Gassó RSM created a start-up company called INERGY. <u>www.inergybcn.com</u>, specialized in energy efficiency consultancy and monitoring software development.

Two main software tools are being commercialized and are now used by

250 municipalities, 10 private companies, and 2 public housing companies, in more than 5,000 office buildings, 3,000 electric lighting systems and 300 dwellings.

The AIDA project

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

CIMM

The AIDA project aims to accelerate the market entry of NZEB.

Target groups

- Municipal representatives
- Architects
- Master-builders.

Actions

- Study tours
- Success stories
- Active support for municipalities
- Close cooperation with key actors

The AIDA consortium

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

AIDA: Study tours

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

CIMME

Blood and Tissue Bank of Catalunya Barcelona (ES)

Kehrerhof Siebeneich Bolzano (IT)

Naturaliabau Merano (IT)

RCTECH's HQ Athens (GR)

Student Dormitories "Aliki Perroti" at the American Farm School Thessaloniki (GR)

Retrofitted multi-family house Kapfenberg (AT)

HLFS Forstwirtschaft Bruck an der Mur (AT)

Salewa Spa HQ Bolzano (IT)

Regional Environmental Center HQ Szentendre (HU)

AIDA: Municipalities

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

- ES Torroella de Montgri, Gualta, Ordis, Girona, Tarragona, Figueres, Maia de Montcal, Murcia
- AT Hohe Wand, Gutenstein, Hartberg, Gleisdorf, Weiz
- IT Bolzano, Merano, Brixen
- FR Beaujolais Val de Saone
- GR Irakleio, Maroussi
- HU Gödöllő
- UK Wolverhampton, Hampshire Council, Grampian Regional Council

25 municipalities engaged in:

- Actions to promote NZEB within SEAP
- Public tenders of NZEB

Background: SEAP

www.aidaproject.eu

A **SEAP** is the key document in which the Covenant signatory outlines how it intends to reach its CO_2 reduction target by 2020.

It defines the activities and measures set up to achieve the targets, together with time frames and assigned responsibilities.

Template: (http://www.eumayors.eu/support/library_en.html)

Two sections:

- 1. Baseline Emission Inventory and local baseline.
- 2. Sustainable Action Plan

Background: SEAP

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

CIMNE?

www.aidaproject.eu Luxembourg Česká republika (Czech Republic) Celtic Sea Slovensko (Slovakia) 18 (Austria) Scl 27 ۱n Su Svizzera Magyarország (Hungary) France (Switzerland) Slovenija 15 (Romania) Bay of Biscay 50 31 21 na i govina (Bosnia and Herzegovina) atia) Србија (Serbia) Monaco Italia (h)България Kosova 311 (Kosovo) Andorra (Bulgaria) Crna Gora Македонија (Macedonia (FYROM)) (Montenegro) Shqipëria 131 (Albania) 380 21 111 Tyrrhenian Portugal España Sea Ελλάς (Spain) (Greece) Gibraltar Mediterranean

NZEB WITHIN SEAP'S

www.aidaproject.eu

In this project **the promotion of nZEBs** is limited to **public buildings**.

They can be **new or existing buildings** with a retrofitting plan.

The action to promote nZEB must be included in the second section of the SEAP

Following indicators must be obtained:

- Estimated **costs** per measure
- Energy savings at primary energy level
- Renewable energy production
- Reduction of **CO₂ emissions**
- Payback period
- Abatement cost (€/Kg CO_{2 saved})

NZEB DEFINITION

www.aidaproject.eu

CIMNE

nZEB acceptance criteria	Calculation method					
Criterion 1: Building energy classification of Class A (at primary energy level) Energy loads: Space heating and cooling Domestic hot water Ventilation Auxiliaries Built-in-lighting	To determine the total energy demand of the building, the final energy consumption, the primary energy consumption and, finally, to evaluate the primary energy of CO_2 emissions					
Criterion 2: Remaining primary energy must be covered by a Renewable contribution of 50-70%	To calculate and define both the power and the energy production of the renewable energy supplier system.					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	To calculate the total balance of primary energy					

Step 1: Selection of buildings

FFIRMATIVE INTEGRATED

www.aidaproject.eu

The energy consultancy companies involved in the SEAP should participate in the selection.

If a **new building** is selected, then the **NZEB action affects the Public Tender.**

In case of **buildings to be retrofitted** a filtering of existing energy consumption and economical viability should be carried out.

Only buildings with **high energy savings potential** should be selected

Step 1: NZEB in new buildings

www.aidaproject.eu

CIMM

The 3 criterion should be included within the Public tender definition

In the SEAP an economic quantification of the overcost of NZEB and expected CO2 emissions savings should be estimated

Example: Municipality of Murcia (Spain)

Descripción del Plan de Acción de Energía Sostenible de Murcia

MEDIDAS DEL PLAN DE ACCIÓN DE ENERGÍA SOSTENIBLE DE MURCIA

SECTORES & campos de actuación	Acciones/ medidas clave por campo de actuación	Institución- Empresa Respon- sable	Periodo temporal de implementa ción de la actuación [fecha de inicio y fin]	Coste estima do (€) <u>por</u> <u>acción</u> <u>/medi</u> <u>da</u>	Ahorro energétic o esperado por medida [MWh/ acción al año]	Producción de energía renovable esperada por medida [MWh/ acción al año]	Reducción de CO2 esperada por medida [tCO2/ año]	Objetivo de ahorro energético por sector <u>per sector</u> [MWh] en 2020	Objetivo de producción local de energía renovable <u>por sector</u> [MWh] en 2020	Objetivo de reducción CO2 <u>por sector</u> [tCO2] en 2020	Reducción de CO2 acumulada hasta 2020 [tCO2/ acción]	Ahorro energético acumulado hasta 2020 [MWh/ acción]	Ahorro económico acumulado hasta 2020 [€/ acción]
--------------------------------------	---	---	---	---	---	--	--	--	---	--	---	---	---

Acción 8: Utilización de iluminación de alta eficiencia y bajo consumo en los nuevos edificios	Ayuntamiento de Murcia	2010-2020	0	1.450	0	682		6.380	14.500	2.030.000	
 municipales o los renabilitados	I										
Acción 9: Construcción de un edificio municipal de consumo casi nulo.	Ayuntamiento de Murcia	2020	360.000	331	100	190		948	1.655	231.700	
							f · · · · · · · · · · · · · · · · · · ·				4

Step 1: NZEB in retroffiting

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

Example: Girona Province: 3 public buildings

Step 2: Criterion 1

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

Base case scenario: Energy labeling before retrofitting

Current Situation	Heating	Cooling	DHW	Lighting	Total	Energy Class
Building energy demand (kWh/m²y)	43,46	13,32				Heating: D Cooling: E
Final energy consumption (Kwh/m²y)	8,69	2,66		149,15	160,51	D
Primary energy (kWh/m²y)	27,94	9,93	-	189,53	227,40	D
CO2 emission (kgCO ₂ /m²y)	6,95	2,47	-	47,13	56,55	D

Retrofitting measures to achieve A label:

Detected deficiencies	Improvement measures to carry out
Summer heat gains within the South façade.	Measure 1: Installation of shading protection devices in the ground floor above the South façade (in front of entry courtyard) .
High electric energy consumption of the building due to the lighting system.	Measure 2: Replacement of the existing lighting devices by LEDs.
Lack of renewable energy production.	Measure 3: Solar Energy PV facility for self-supply

Step 2: Criterion 1

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

Achievement of Criterion 1:

Case N	Improvement	P	Energy				
	measures	Heating	Cooling	DHW	Lighting	Total	Class
1	None	0	0	0	0	0	D
2	1	11,39	-1,29	0	0	10,10	D
3	2	17,13	-4,26	0	150,32	163,19	А
4	1+2	11,39	-1,29	0	150,32	160,42	А

Step 3: Criterion 2

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

RES production: PV systems in the rooftop

Performance of Grid-connected PV

PVGIS estimates of solar electricity generation

Location: 42°2'31" North, 3°7'12" East, Elevation: 10 m a.s.l., Solar radiation database used: PVGIS-CMSAF

Nominal power of the PV system: 10.0 kW (crystalline silicon) Estimated losses due to temperature and low irradiance: 15.0% (using local ambient temperature) Estimated loss due to angular reflectance effects: 2.6% Other losses (cables, inverter etc.): 14.0% Combined PV system losses: 28.7%

	Fixed system: inclination=38 deg.,											
	orientation=0 deg. (optimum)											
Month	Ed Em Hd Hm											
Jan	28.90	895	3.81	118								
Feb	36.30	1020	4.87	136								
Mar	40.80	1260	5.64	175								
Apr	42.30	1270	5.93	178								
May	43.60	1350	6.23	193								
Jun	44.80	1340	6.54	196								
Jul	44.80	1390	6.66	206								
Aug	43.50	1350	6.44	200								
Sep	41.70	1250	6.01	180								
Oct	35.20	1090	4.94	153								
Nov	29.40	881	3.95	118								
Dec	27.90	863	3.67	114								
Year	38.20	1160	5.39	164								
Total for		14000		1970								
year												

Ed: Average daily electricity production from the given system (kWh)

Em: Average monthly electricity production from the given system (kWh)

Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2)

Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)

Step 4: Criterion 3

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

www.aidaproject.eu

nZEB criteria	Software tool	Baseline scenario	Result	Improvement measures
1	CE3	Class D	Class A	Class A retrofitting measures
2	PVGIS	0% RES	<u>PV production:</u> 14.000 KWh/y 50% RES	RES system measures
3	Excel of Annex nZEB	227,40 kWh/m ² ·year 56,55 Kg CO_2/m^2 ·year	66,98 kWh/m²⋅y 7,07Kg CO ₂ /m²⋅y	All

AFFIRMATIVE INTEGRATED ENERGY DESIGN ACTION

Step 5: Economical evaluation

www.aidaproject.eu

nZEB action summary		Main origi	Added fields by the AIDA project			
SEAP measures	Estimated Expected Expected energy renewable reduced action/mea saving per sure (€) (MVVh/y) per measure (MVVh/y) energy measure (MVVh/y)		Expected CO2 reduction per measure (Tn CO2/y)	Payback period (y)	Abatement cost (€/kg CO2 saved)	
Class A retrofitting measures	43.548,14	48,61	0,00	17,46	3,24	0,77
RES system measures	23.900,00	0,00	14,00	3,78	7,15	0,88
Overall nZEB action	67.448,14	48,61	14,00	21,24	4,67	0,68

Introduction in SEAP template

CIMNE

	www.aidaproject.eu
SECTORS & fields of action	KEY actions/measures <u>per field of action</u>
BUILDINGS, EQUIPMENT / FACILITIES & INDUSTRIES	
Municipal buildings, equipment/facilities	Action 1.1.1: Reduced heating needs in municipal facilities Action 1.1.2: Replacing inefficient computers in municipal facilities Action 1.1.3: Rehabilitation of school with zero emissions standard Action 1.1.4: Improved weather system in municipal buildings Action 1.1.5: Optimisation of municipal pumping system Action 1.1.6: Rehabilitation of public building 'Local Social Ajuntament d'Ordis' as 'Net Zero Energy Building' or NZEB Action *: Installing solar energy systems to provide not water in the nursery according to the Technical Building CodeAction Action *: Solar panels in the locker room (is hot water)
Tertiary (non municipal) buildings,equipment/facilities	Action 1.2.1: Performing audits in the tertiary sector

www.aidaproject.eu

What?

SEMANTIC TECHNOLOGIES FOR CARBON REDUCTION IN URBAN PLANNING

SEMANCO is a three year research project co-funded by the FP7 "ICT systems for Energy Efficiency" programme of the European Union. It began in September 2011.

The research is developing IT tools and methods to help planers and developers to reduce CO2 emissions in our neighbourhoods, cities and regions.

Related experiences: MARIE

www.aidaproject.eu

Projet cofinancé par le Fonds Europeén de Développement Régional

MEDITERRANEAN BUILDING RETHINKING FOR ENERGY EFFICIENCY IMPROVEMENT <u>http://www.marie-medstrategic.eu/</u>

-To develop and adopt new requirements and tools to achieve EPBD goals.

-To Find financial mechanisms to stimulate thermal retroffitting of buildings.

-Energy renovation support to local medium and small businesses.

Mediterranean regions: 9 countries and 23 partners

The MARIE project

www.aidaproject.eu

OUR WORK:

"Consultant for development of Design and Implementation of Urban Plans for Energy Efficiency Improvement in existing buildings"

1- Define a METHODOLOGY and TOOLS for calculating energy efficient urban plans

2- Implementation of the methodology in the Pilot Activity of Bar (Montenegro)

3- Analysis of the impact and conclusions of comparison between the other different Pilot Acitivies.

The MARIE project

www.aidaproject.eu

CIMPLE

Methodology for an energy efficient urban planning

DATA ACQUISITION

Socioeconomic: Occupation Comfort conditions Appliances (Power)

> Architecture: Materials Age

GIS or CAD:

Shape

Shape

Volume

description

Shadows

CLASSIFICATION OF BUILDINGS AND BASELINE

Classification of building typologies

Energy performance calculation (Baseline) Hot spots identification

IED

ANALYSIS AND

DECISION MAKING

ENERGY PERFORMANCE OF AUDITED BUILDINGS

Energy Audit most representative buildings

Energy saving of measures % of savings % of RES ENERGY PERFORMANCE OF THE AREA (ALTERNATIVES)

Final energy uses Energy carriers

Benchmarks (Reference values):

MULTI-CRITERIA ANÁLISIS OF ALTERNATIVES

Pilot Activity: Municipality of Bar (Montenegro)

EFFIC ENCY IMPROVEMENT

IMPROVEMENT MEASURES

		= •			🏧 💶 🖼		- 🖴 🛥		Selected Building:
TABULA	Country	Region	Contruction Year Class	Additional Classification	SFH Single Family House	TH Terraced House	MFH Multi Family House	AB Apartment Block	
WebTool Types ilding Types	-	national (Gesamt- Österreich)	1919	generic (Standard / allgemein typisch)	AT.N.SFH.01.Gen	AT.N.TH.01.Gen	AT.N.MFH.01.Gen	AT.N.AB.01.Gen	Building Size Class: SFH Construction Period: 01918
stem Types	=	national (Gesamt- Österreich)	1 919 1944	generic (Standard / allgemein typisch)	AT.N.SFH.02.Gen	AT.N.TH.02.Gen	AT.N.MFH.02.Gen	AT.N.AB.02.Gen	Reference Floor Area: 159.44 m ² Heat Supply System: single family house / oil central heating , poor efficiency
		national (Gesamt- Österreich)	1945 1960	generic (Standard / allgemein typisch)	AT.N.SFH.03.Gen	AT.N.TH.03.Gen	AT.N.MFH.03.Gen	AT.N.AB.03.Gen	Display chart:
Variants Comparison	=	national (Gesamt- Österreich)	1961 1980	generic (Standard / allgemein typisch)	AT.N.SFH.04.Gen	AT.N.TH.04.Gen	AT.N.MFH.04.Gen	AT.N.AB.04.Gen	[kWh/(m²a)]
Calculation Details		national	1091 1000	generic (Standard /	-	THE	1		500 - 450 - 450 -
Building: AT.N.SFH.01.Gen.ReEx.001	_	Österreich)	1301 1330	allgemein typisch)	AT.N.SFH.05.Gen	AT.N.TH.05.Gen	AT.N.MFH.05.Gen	AT.N.AB.05.Gen	350 - 300 - 250 - 200 -
Heating System: AT.OII.B.SUH.01		national		generic		-		In. M	
Hot Water System: AT.OII.B.SUH.01 Ventilation System:	Country: Austria	In charge: AEA	Charts - Displ standard calc adapted	ay Indicators; ulation, not	Display Primary Energy on non-renewable primary ene	pages "Variants": rgy	Assessment of Energy Carriers European standard values	: Building: exemplary existing building	ting State Usual Usual Juanced

